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The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza
depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside
salt and aspirin’s related genes were identified via the STITCH4.0 andGeneCards Database. A text search engine (Agilent Literature
Search 2.71) and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28
overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A
multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and
atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and
other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus,
insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza
depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further
clinical trials to confirm this hypothesis are still needed.

1. Introduction

AntithromboticTherapy and Prevention ofThrombosis (Ver-
sion 9) [1], announced by the American College of Chest
Physicians (ACCP) Evidence-Based Clinical Practice Guide-
lines, proposed lasting low-dose aspirin therapy to be used
as the primary prevention technique for patients above 50
years old or patients diagnosed with coronary heart disease
(CHD). For patients with acute coronary syndrome (ACS)
or undergoing stent implantation with PCI, dual antiplatelet
therapy for up to one year is required. Antithrombotic
therapy plays a crucial role in prevention and treatment
of CHD, in which aspirin undoubtedly is the most widely
used conventional drug. Aspirin irreversibly inhibits COX-
1 and modifies the enzymatic activity of COX-2, which nor-
mally produces prostanoids [2]. Antiplatelet effect of aspirin
inhibits the prostaglandin production which downregulates
thromboxane A2 (TXA2) levels. TXA2 is bound by platelet
molecules under the normal circumstances to create a patch

over damaged walls of blood vessels. Due to the fact that it
inhibits formation of blood clot in people with high risk [3],
aspirin is also used in the long term, at low doses, to help
prevent heart attacks [4]. Salviamiltiorrhiza, a Chinese herbal
medicine which promotes blood circulation to remove blood
stasis drugs [5], has been widely used to treat cardiovascular
diseases such as CHD. In 2005, S. miltiorrhiza depside salt
passed the certification of new drug application for chronic
angina treatment at the State Food and Drug Administra-
tion (SFDA). 80% of its active components are magnesium
lithospermate B (MLB) and its analogs (salvianolic acid B and
lithospermic acid B) [6] extracted from Salvia miltiorrhiza
major water-soluble active ingredients. The other 20% are
mainly rosmarinic acid (RA) and lithospermic acid (LA).
A clinical noninferiority study showed that S. miltiorrhiza
depside salt had definite therapeutic effect in patients with
CHD angina pectoris, with no evidence of adverse drug
reaction (ADR) [7]. Aspirin and S. miltiorrhiza depside
salt are thus commonly used in CHD treatment, but the
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molecular relationships between the two drugs are still
under study. Current evidence shows that both similar and
different molecular therapeutic patterns exist between these
two drugs, but the exact pattern of whether they are the
same, different, or partially overlapping remains unknown.
Therefore, a network pharmacology approach seems to be of
interest as it would reveal the potential overlapping or unique
modules that are affected by either treatment.

“Network pharmacology” [8], which combines systems
biology and biological networks, balances the perspective of
development process to explain the disease [9]. It improves
or restores biological networks from a balanced perspective
and explains the interaction between the drug and the human
body. It emphasizes the discovery of drugs’ signaling pathway
and provides a reference to improve the therapeutic effect
and reduce side effects. According to the characteristics of the
multicomponent andmultitarget of Chinese herbalmedicine,
network pharmacology may be a new and well-documented
method to find some meaningful information. Therefore,
related genes were used to construct the molecular network,
combined with module division with modular analysis to
excavate the associations of aspirin and active components
of S. miltiorrhiza depside salt in this study. We believe that
exploring the internal connection of potential molecular
interactions between the two drugs can provide a clue for
combination therapy of CHD.

2. Materials and Methods

2.1. Gene Obtaining. GeneCards (http://www.genecards
.org/) is a comprehensive and authoritative database that
provides information of human genes [10] and is known as
the most inclusive resource of gene-centered information
of the human genome [11]. STITCH (http://stitch.embl.de/)
is a database of protein-chemical interactions integrating
massive literature information and various databases of
biological pathways and drug-target relationships [12]. It is
used to create a network of interactions [13]. “MLB”, “RA”,
“LA” (active components of S. miltiorrhiza depside salt), and
“Aspirin” were entered into the integrated and searchable
database of GeneCards and STITCH4.0 to search and export
related genes in Homo sapiens, respectively.

2.2. Network Construction. The genes related to active com-
ponents of S. miltiorrhiza depside salt (“MLB”, “RA”, and
“LA”) and “Aspirin” were submitted to the Agilent Literature
Search software v.3.1.1 (http://www.agilent.com/labs/research/
litsearch.html), which is a powerful automatic metasearch
tool for querying multiple text-based PubMed and USPTO,
for associations among genes of interest and construct-
ing a network. Agilent Literature Search is a registered
plugin and can be used in conjunction with Cytoscape
(http://www.cytoscape.org/) to realize the visualization and
analyzation of the network [14] (parameters: Max Engine
Matches = 10; Concept Lexicon = Homo sapiens; Interaction
Lexicon = limited).

2.3. Identification of Modules. The modular structures exist
in a complex biological systematic network, so we detect

highly interconnected regions clusters in the network by
MCODE (http://baderlab.org/Software/MCODE). MCODE
is a clustering algorithm tool, which divides network module
and provides detailed algorithm [15] (parameters: degree
cutoff = 2; K-core = 2; node score cutoff = 0.2). Network can
be divided into several modules. Results can be visualized by
Cytoscape.

2.4. GO Biological Process and KEGG Pathway Enrichment.
DAVID software was used (http://david.abcc.ncifcrf.gov/) to
analyze the function of modules. DAVID software provides
hypergeometric distribution tests andmainly includes typical
batch annotation and gene-GO term enrichment analysis to
highlight the most relevant GO terms associated with a given
gene list [16] (parameters: Count = 2; EASE= 0.01; species and
background = Homo sapiens). DAVID functional annotation
clustering uses an algorithm to measure relationships among
the annotation terms based on the degrees of their coassoci-
ation genes to group similar, redundant, and heterogeneous
annotation contents from the same or different resources
into annotation groups. It can display genes from a user’s
list on pathway maps to facilitate biological interpretation
in a network context by taking full advantage of the well-
known KEGG pathways.The biological processes and KEGG
pathway corresponding to the modules were identified and
ranked by 𝑃 values (𝑃 < 0.05; reliability is higher).

3. Result

3.1. Genes Related to Active Components of S. miltiorrhiza
Depside Salt andAspirin in STITCHandGeneCardsDatabase.
After searching the STITCH (Homo sapiens, score > 0.400,
medium confidence) and GeneCards Database (on March
16, 2015), we found 55 genes related to active components
of S. miltiorrhiza depside salt and 498 genes related to
aspirin. There were 32 overlapping genes shared by the
two drugs, and these genes accounted for 58.18% (32/55)
of the identified genes related to active components of S.
miltiorrhiza depside salt, 6.43% (32/498) of the identified
genes related to aspirin, and 5.79% (32/553) of all genes related
to both drugs. After entering 32 overlapping genes’ list in
GO functional annotation, it showed that the common roles
included response to chemical stimulus, response to stress,
multiorganism process, response to stimulus, and response
to external stimulus (Table 1).

3.2. Topological Analysis of Network. After submitting 55 and
498 genes related to active components of S. miltiorrhiza
depside salt and aspirin into the Agilent Literature Search
3.1.1, two networks were created (Figures 1(a) and 1(b)).
There were 528 nodes (genes) and 1506 edges (interactions)
identified from the active components of S. miltiorrhiza
depside salt-related genes and 2120 nodes (genes) and 9064
edges (interactions) from the aspirin-related genes. Similar
distributions of node degree that followed the power-law
distribution appeared in two networks (Figures 1(c) and 1(d)).
The topological analysis of two networks such as clustering
coefficient, centralization, density, diameter, and radius was
shown in Table 2.
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Table 1: Top 10 overlapping biological functions of the 32 overlapping genes related to active components of S. miltiorrhiza depside salt and
aspirin.

GO terms 𝑃 value Gene

GO:0042221: response to
chemical stimulus 9.5𝐸 − 19

XDH, TNF, MCL1, IL8, PTGS2, RELA, EDN1, SOD1, MMP2, TGFB1, CCL11, MAPK1,
CASP3, CCR3, JUN, BCL2, SERPINE1, IFNG, IL1B, NOS3, MAPK8, ALOX5, NOS2, and
IKBKB

GO:0006950: response to
stress 4.3𝐸 − 16

TNF, PTGER3, IL8, PTGS2, RELA, EDN1, NFKB1, SOD1, MMP2, TGFB1, CCL11,
MAPK1, CASP3, CCR3, JUN, BCL2, AKR1B1, SERPINE1, IFNG, IL1B, NOS3, MAPK8,
ALOX5, and NOS2

GO:0051704:
multiorganism process 5.6𝐸 − 14

TNF, PTGS2, RELA, SOD1, MMP1, TGFB1, CCL11, VCAM1, MAPK1, APP, CCR3, JUN,
BCL2, IFNG, IL1B, NOS3, and NOS2

GO:0050896: response to
stimulus 7.5𝐸 − 14

XDH, TNF, MCL1, PTGS2, EDN1, NFKB1, MMP2, TGFB1, CASP3, APP, BCL2,
SERPINE1, IFNG, IL1B, NOS3, NOS2, PTGER3, IL8, RELA, SOD1, CCL11, MAPK1,
CCR3, JUN, AKR1B1, MAPK8, ALOX5, and IKBKB

GO:0009605: response to
external stimulus 2.9𝐸 − 13

TNF, PTGER3, IL8, PTGS2, RELA, NFKB1, SOD1, TGFB1, CCL11, MAPK1, CASP3,
CCR3, JUN, BCL2, IFNG, SERPINE1, IL1B, and ALOX5

GO:0042127: regulation of
cell proliferation 5.2𝐸 − 13

PTGER2, TNF, IL8, PTGS2, RELA, EDN1, TGFB1, VCAM1, MAPK1, CASP3, JUN, BCL2,
IFNG, SERPINE1, IL1B, NOS3, and NOS2

GO:0042981: regulation of
apoptosis 7.3𝐸 − 13

TNF, PTGS2, MCL1, RELA, NFKB1, SOD1, TGFB1, MAPK1, APP, CASP3, JUN, BCL2,
IFNG, IL1B, NOS3, MAPK8, and IKBKB

GO:0043067: regulation of
programmed cell death 8.5𝐸 − 13

TNF, PTGS2, MCL1, RELA, NFKB1, SOD1, TGFB1, MAPK1, APP, CASP3, JUN, BCL2,
IFNG, IL1B, NOS3, MAPK8, and IKBKB

GO:0010941: regulation of
cell death 9𝐸 − 13

TNF, PTGS2, MCL1, RELA, NFKB1, SOD1, TGFB1, MAPK1, APP, CASP3, JUN, BCL2,
IFNG, IL1B, NOS3, MAPK8, and IKBKB

GO:0065008: regulation of
biological quality 3.4𝐸 − 12

XDH, TNF, PTGER3, PTGS2, MCL1, EDN1, SOD1, TGFB1, CCL11, CASP3, APP, CCR3,
JUN, BCL2, IFNG, SERPINE1, IL1B, NOS3, NOS2, and IKBKB

Table 2:The topological attributes of the gene interaction networks.

Parameters
Active components of

S. miltiorrhiza
depside salt

Aspirin

Clustering coefficient 0.618 0.586
Nodes 528 2120
Edges 1506 9064
Network centralization 0.081 0.101
Network density 0.011 0.004
Network diameter 10 9
Network radius 1 1

3.3. Module Identification. After submitting two networks
into MCODE software, 38 modules were identified from
active components of S. miltiorrhiza depside salt network.
The maximum module was composed of 46 nodes while the
minimumwas composed of 3 nodes.There were 122 modules
in aspirin network. The maximum module is composed of
112 nodes while the minimum is composed of 3 nodes. Two
networks shared 2 overlapping functional modules including
the same genes: M(s3a10) and M(s33a100) (Figure 2(a)). M(s3a10)
contains 7 nodes (CD86, TNFSF9, EMR2, CD37, ICOSLG,
SPN, and CD97) and 21 edges. M(s33a100) contains 3 nodes
(FASN, SCD, and DGAT2) and 3 edges (Figure 2(b)).

3.4. Functional Enrichment Analysis of 2 Overlapping Mod-
ules. The two overlapping modules contained 15 biological

functional annotations and 2 pathways (Figure 2(c)). Bio-
logical annotations included immune effector processes (4)
(regulation of immune response, regulation of immune effec-
tor process, positive regulation of immune system process,
and regulation of immune system process), lipid biosynthetic
and metabolic processes (5) (lipid biosynthetic process, lipid
metabolic processes, fatty acid metabolic process, cellular
lipid metabolic process, and fatty acid metabolic process),
other biosynthetic and metabolic processes (5) (carboxylic
acid biosynthetic process, organic acid biosynthetic process,
cellular biosynthetic process, monocarboxylic acid metabolic
process, and biosynthetic process), and regulation of response
to stimulus (1). So the main biological functions of the 2
overlapping modules were lipid biosynthetic and metabolic
and immune effector. The 2 pathways from overlapping
modules were cell adhesion molecules (CAMs) pathway and
intestinal immune network for IgA production pathway.

3.5. Functional Enrichment of Unique Modules for 2 Drugs.
GO functional enrichment analysis was implemented on
acquired top 10 nonoverlappingmodules of the 2 drugs sorted
by MCODE score, respectively (Figures 3(a) and 4(a)). 762
GO biological functions and 63 KEGG pathways were found
in modules of active components of S. miltiorrhiza depside
salt’s network, and 1391 GO biological functions and 80
KEGG pathways were found in modules of aspirin’s network.
The 63 pathways of Salvianolate network (Figure 3(b)) are
as follows: 23 human diseases pathways (cancers (pancreatic
cancer, bladder cancer, and another 17 cancers), immune dis-
eases (primary immunodeficiency and autoimmune thyroid
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Figure 1: Characteristics of two gene interaction networks. (a) Active components of S. miltiorrhiza depside salt-related genes interaction
network. (b) Aspirin-related genes interaction network. Yellow diamonds denote known active components of S. miltiorrhiza depside salt
and aspirin-related genes, and red and green denote genes obtained from text mining. (c) The degree distribution of active components of S.
miltiorrhiza depside salt network. (d) The degree distribution of aspirin network.

disease), endocrine and metabolic diseases (type II diabetes
mellitus), and infectious diseases (epithelial cell signaling in
Helicobacter pylori infection)), 17 immune system pathways,
8 cellular processes pathways (cell growth and death (6),
regulation of autophagy, and focal adhesion), 5 endocrine
system pathways, and so forth.The 80 pathways (Figure 4(b))
of aspirin network are as follows: 21 metabolism pathways
(carbohydrate metabolism (6), xenobiotics biodegradation
(5), cofactors and vitamins metabolism (3), lipid metabolism
(3), and others), 21 immune system pathways (hematopoietic
cell lineage, natural killer cell mediated cytotoxicity, Toll-
like receptor signaling pathway, etc.), 18 human diseases

pathways (cancers (prostate cancer, prostate cancer, and
another 9 cancers), immune diseases (5), viral myocarditis
(1), and Alzheimer’s disease (1)), 7 signaling molecules and
interaction pathways, 5 cellular processes (cell growth and
death (3) and cellular community (2)), 5 signal transduction
pathways, and so forth.

After eliminating repeated pathways, active components
of S. miltiorrhiza depside salt had 44 pathways while aspirin
had 53 pathways, including 26 common pathways. Common
pathways were as follows: immune systems (11) (chemokine
signaling pathway, NOD-like receptor signaling pathway,
hematopoietic cell lineage pathway, T cell receptor signaling
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Figure 2: Number of two-drug modules, overlapping modules, and biological functions. (a) Number of modules identified from two
networks. (b) Blue circles indicate the genes in the 2 overlappingmodules. (c) GO biological processes of 2 overlappingmodules. (d) Pathways
of 2 overlapping modules.

pathway, Toll-like receptor signaling pathway, RIG-I-like
receptor signaling pathway, and 5 other related immune sys-
tem pathways), human diseases (5) (cancers (bladder cancer,
small cell lung cancer, and colorectal cancer and pathways
in cancer) autoimmune thyroid disease), cellular processes
(3) (apoptosis, p53 signaling pathway, and focal adhesion),

signal transduction (3) (ErbB signaling pathway, Jak-STAT
signaling pathway, and VEGF signaling pathway), signaling
molecules and interactions (2) (CAMs and cytokine-cytokine
receptor interaction), neurotrophin signaling pathway (1),
and progesterone-mediated oocytematuration. Unique path-
ways of active components of S. miltiorrhiza depside salt
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were as follows: cancers (6), immune diseases or systems
(4) (autoimmune thyroid disease, primary immunodefi-
ciency, B cell receptor signaling pathway, and Fc gamma
R-mediated phagocytosis pathway), endocrine diseases or
systems (4) (insulin signaling pathway, type II diabetes

mellitus, adipocytokine signaling pathway, GnRH signaling
pathway, and progesterone-mediated oocyte maturation),
cellular processes (3) (cell cycle, regulation of autophagy, and
oocyte meiosis), and mTOR signaling pathway (1). Unique
pathways of aspirin were as follows: metabolism pathways
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(17) (arachidonic acid metabolism, linoleic acid metabolism,
other carbohydrate metabolisms, and another 14 related
pathways), immune diseases and system (4) (Huntington’s
disease, allograft rejection, amyotrophic lateral sclerosis
(ALS) pathway, and complement and coagulation cascades
pathway), human diseases (3) (viral myocarditis, Alzheimer’s
disease, andParkinson’s disease), PPAR signaling pathway (1),
ABC transporters pathway (1), and ECM-receptor interaction
pathway (1).

4. Discussion

Aspirin and S. miltiorrhiza depside salt are commonly used
drugs for the treatment of CHD, but there is lack of rela-
tionship studies between the two drugs from large-scale
molecular perspective. Two overlapping modules and many
common biological processes and pathways between the two
drugs were known in this investigation. These results are
likely to reveal the overlap of potential therapy mechanism
and internal connection between the two drugs. Except for
the overlap, the two drugs also have some unique functions,
which have an excellent advantage in different ranges.

There are 32 overlapping genes between aspirin and active
components of S. miltiorrhiza depside salt, such as JUN,
VCAM-1, TGFB1, TGFB1, IL8, IL1B, NOS2, NOS3, MAPK1,
MAPK8, CASP3, MMP1, and MMP2 that have been associ-
ated with the cardiovascular diseases (coronary heart disease,
angina pectoris, atherosclerosis, and thrombosis which are
all within the scope of CHD) as biomarkers or therapeutic
targets from the Comparative Toxicogenomics Database.
Vascular endothelial cell proliferation and apoptosis are an
early marker for atherosclerosis. Therefore, prevention of
smooth muscle cell and endothelial cell proliferation and
removal of superoxide radicals have a positive effect for treat-
ment of CHD. JUN participates in the biological process of
angiogenesis [17] and increases endothelial cell proliferation
and smooth muscle cell hyperplasia [18]. IL8, IL1B, TGFB1,
and VCAM-1 participate in the inflammatory response [19].
TGFB1 positively regulates cell migration, apoptosis, and
blood vessel endothelial cell migration [20]. VCAM-1, which
belongs to immunoglobulin superfamily (IgSF), is widely
expressed in human aortic endothelial cells (HAECs). It also
plays an important role in cell adhesion. Overexpression of
VCAM-1 causes increased endothelial adhesion [21], which
further leads to the formation of atherosclerotic plaque
rupture NOS2 and NOS3 belonging to NO (produces nitric
oxide) [22], which is implicated in vascular smooth muscle
relaxation through a cGMP-mediated signal transduction
pathway. NOS2 and NOS3 positively regulate vasodilation
and mediate vascular endothelial growth factor- (VEGF-)
induced angiogenesis in coronary vessels [23] and promote
blood coagulation through the activation of platelets [24].
MAPK1, MAPK8, and CASP3 play an irreplaceable role
in biological process of apoptosis. MAPK is a key signal
transduction receptor from the surface to the nucleus, which
is involved in cell proliferation, differentiation, migration,
transformation, and apoptosis in the whole process. MAPKs
play an important role in regulating the expression of proin-
flammatory molecules in many cells [25]. CASP3 can not

only activate a variety of factors for apoptosis [26], but also
participate in the process of platelet formation [27]. MMP1
and MMP2 belong to the metalloproteinase family. They
are involved in diverse functions such as remodeling of the
vasculature, angiogenesis, inflammation, blood coagulation,
and atherosclerotic plaque rupture. MMPs have a role in
myocardial cell death pathways and vascular remodeling
[28], such as vascular smooth muscle cell migration into
the intima [29]. Regulation of cell proliferation, apoptosis,
programmed cell death, and cell death are commonbiological
functions of the 32 overlapping genes, which are considered
remarkable aspects of CHD [30]. Thus, these overlapping
genes’ biological functions aremainly reflected inHAECs and
atherosclerosis process.

There are 28 common pathways in overlapping and
top 10 unique modules between active components of S.
miltiorrhiza depside salt and aspirin. Most of these pathways
are related to the antitumor and inflammatory immune
response (p53 signaling pathway, ErbB signaling pathway, T
cell receptor signaling pathway, etc.). But there are also some
pathways participating in the process of antiatherosclerosis.
CAMs pathway participates in cell growth and death, which
are associated with cardiovascular diseases [31]. CAMs are
proteins expressed on the cell surface and function in HAECs
adhesion. CAMs play a critical role in a wide array of bio-
logical processes that include hemostasis, immune response,
inflammation, embryogenesis, and development of neuronal
tissue, which establish strong adhesion on the endothelium
of arteries. VEGF signaling pathway can regulate vascular
endothelial cell proliferation and migration. It also leads to
change of vascular permeability and control of angiogenesis.
There is now much evidence that VEGFR-2 is the major
mediator of VEGF-driven responses in endothelial cells and
it is considered to be a crucial signal transducer in both
physiologic and pathologic angiogenesis [32]. JAK-STAT
pathway is the principal signalingmechanism for awide array
of cytokines and growth factors, closely related to the main
factor VEGF which mediates proliferation and migration
of vascular endothelial cells [33]. In IFN-𝛾-treated HAECs,
MLB inhibited IFN-𝛾-induced JAK-STAT signaling pathways
and consequently suppressed IFN-𝛾-induced expression of
chemokines, IP-10 promoter activity, IP-10 protein release,
and monocyte adhesion to HAECs [34].

Antiplatelet treatment with aspirin is widely considered
as a cornerstone of atherosclerotic vascular disease’s primary
[35] and secondary prevention and also used for acute
treatment [36]. In this study, we found that aspirinmay play a
more important role in metabolism, such as the well-known
AA metabolism pathway and other lipid or carbohydrate
metabolism pathways. Moreover, we found that aspirin par-
ticipates in the PPAR signaling pathway, and PPAR-𝛾 has
played a pivotal role in anti-inflammation, atherosclerosis,
insulin resistance, and antitumor [37]. Active components of
S. miltiorrhiza depside salt may play a more important role in
endocrine system, such as type II diabetes mellitus, insulin
signaling pathway, and adipocytokine signaling pathway.
Cardiovascular disease, especially CHD, is the primary cause
of mortality among diabetes mellitus patients. Entirely due
to more extensive coronary atherosclerosis, more than 50%
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of diabetes mellitus patients will die from a cardiovascular
event. Meanwhile, diabetes mellitus is a risk factor for
coronary heart disease [38]. Type II diabetes mellitus is
a chronic low-grade inflammatory disease. Inflammatory
factor and adipose cytokines are involved in the development
of type II diabetes mellitus and its complications [39]. The
metabolic syndrome can promote the development of type II
diabetes and CHD. Insulin resistance plays a pivotal role in
the progression of this syndrome and cardiovascular diseases.
Improvement of insulin resistance, therefore, is most likely to
reduce the high cardiovascular event rate in type II diabetes
[40]. Control of blood glucose and blood lipid has a positive
role to prevent and delay the development of atherosclerosis.
Previous studies have demonstrated that Salvianolate has
positive effect on attenuating atherosclerosis [41], scavenging
free radical [42], preventing endothelial dysfunction [43],
regulating matrix metalloproteinases expression, activity,
and anti-inflammation [44], modulating lipid profiles [45],
and protecting against myocardial ischemia and reperfusion
(MI/R) injury [46].

Finally, through analyzing the molecular networks mod-
ule, these two drugs were found not only sharing certain
biological processes and pathways, but also having unique
character. So using aspirin combinedwith S.miltiorrhizadep-
side salt may be more efficient in treatment of CHD patients,
especially those with diabetes mellitus or hyperlipidemia.

5. Conclusion

We adopted network-based approach to investigate the sim-
ilarities and differences between S. miltiorrhiza depside salt
and aspirin in great detail. A multidimensional framework of
drug network showed that the two drugs reflected commonly
in human aortic endothelial cells and atherosclerosis process.
Aspirin plays a more important role in metabolism, such as
the well-known AA metabolism pathway and other lipid or
carbohydrate metabolism pathways. S. miltiorrhiza depside
salt still plays a regulatory role in type II diabetes mellitus,
insulin resistance, and adipocytokine signaling pathway.
Therefore, this study suggests that aspirin combined with S.
miltiorrhiza depside salt may be more efficient in treatment
of CHD patients, especially those with diabetes mellitus or
hyperlipidemia, but should be confirmed by further clinical
trials.
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